Addressing Soil Salinity Stress in Rice Farming: Insights from Tirtayasa District, Banten Province, Indonesia

Main Article Content

Erwin Fajar Hasrianda

Abstract

Soil salinity stress poses a major obstacle to rice farming and food security in Indonesia, especially in the Tirtayasa sub-district, Banten Province. This condition is exacerbated by climate change and global warming. A field study was conducted to examine the impact of salt stress on rice farming and gain insights from farmers in salin-affected areas to develop salt-tolerant rice varieties. The research included measurements of soil salinity levels, soil pH, visual documentation of rice plant health, and microscopic observations. The results showed an increasing land area affected by salt stress over the years in the Tirtayasa region. Morphological analysis indicated that Inpari 32 rice plants exposed to salinity had fewer roots, even at moderate salinity levels, resulting in a significant decrease in yields up to 100 percent. Farmers also lacked effective methods to cope with salt stress in their fields. Although the market provides salt-tolerant rice cultivars, farmers observe that their yields are not comparable to non-tolerant varieties. This study highlights the urgency of developing salt-tolerant rice varieties in line with the preferences of local farmers to enhance food resilience in Indonesia. These findings provide additional information on salin soil in Banten and the need to develop a salt-tolerant rice variety to overcome salin-stress challenges in agriculture. 

Article Details

Section
Articles

References

Achmad Rachman, Ai Dariah, S. S. (2018). Pengelolaan Sawah Saline Berkadar Garam Tinggi. In IAARD Press (Vol. 6, Issue August).

Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

Cotsaftis, O., Plett, D., Shirley, N., Tester, M., & Hrmova, M. (2012). A two-staged model of Na+ exclusion in rice explained by 3d modeling of HKT transporters and alternative splicing. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0039865

Dionisio-Sese, M. L., & Tobita, S. (2000). Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology, 157(1), 54–58. https://doi.org/10.1016/S0176-1617(00)80135-2

Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02791

Eviati, S., & Sulaeman, M. (2009). Analisis kimia tanah, tanaman, air, dan pupuk. Balai Penelitian Tanah. Bogor, 246.

FAO. (2021). Global Map of Salt-Affected Soils. FAO Rome, Italy.

Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3), 327–331. https://doi.org/10.1093/aob/mcu267

Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1–2), 15–24. https://doi.org/10.1016/j.agwat.2005.04.015

Flowers, T. J., & Yeo, A. R. (1981). Variability in the Resistance of Sodium Chloride Salinity Within Rice (Oryza Sativa L.) Varieties. New Phytologist, 88(2), 363–373. https://doi.org/10.1111/j.1469-8137.1981.tb01731.x

Fricke, W., Akhiyarova, G., Veselov, D., & Kudoyarova, G. (2004). Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of Experimental Botany, 55(399), 1115–1123. https://doi.org/10.1093/jxb/erh117

Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies. CAB international.

Hairmansis, A., Berger, B., Tester, M., & Roy, S. J. (2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice, 7(1), 1–10. https://doi.org/10.1186/s12284-014-0016-3

Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Ismail, M. R., Selamat, A., Rafii, M. Y., & Latif, M. A. (2014). Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Research International, 2014.

Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1), 1–18. https://doi.org/10.1186/1939-8433-5-11

Hussain, M., Ahmad, S., Hussain, S., Lal, R., Ul-Allah, S., & Nawaz, A. (2018a). Rice in saline soils: physiology, biochemistry, genetics, and management. Advances in Agronomy, 148, 231–287.

Hussain, M., Ahmad, S., Hussain, S., Lal, R., Ul-Allah, S., & Nawaz, A. (2018b). Rice in Saline Soils: Physiology, Biochemistry, Genetics, and Management. In Advances in Agronomy (1st ed., Vol. 148). Elsevier Inc. https://doi.org/10.1016/bs.agron.2017.11.002

Jenks, M. A., Hasegawa, P. M., Jain, S. M., & Foolad, M. (2007). Advances in molecular breeding toward drought and salt tolerant crops. Springer.

Julkowska, M. M., Hoefsloot, H. C. J., Mol, S., Feron, R., De Boer, G. J., Haring, M. A., & Testerink, C. (2014). Capturing arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity. Plant Physiology, 166(3), 1387–1402. https://doi.org/10.1104/pp.114.248963

Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21(1), 1–27. https://doi.org/10.3390/ijms21010148

Kavitha, P. G., Miller, A. J., Mathew, M. K., & Maathuis, F. J. M. (2012). Rice cultivars with differing salt tolerance contain similar cation channels in their root cells. Journal of Experimental Botany, 63(8), 3289–3296. https://doi.org/10.1093/jxb/ers052

Läuchli, A., & Grattan, S. R. (2007). Plant growth and development under salinity stress. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, 1–32.

Lin, H. X., Zhu, M. Z., Yano, M., Gao, J. P., Liang, Z. W., Su, W. A., Hu, X. H., Ren, Z. H., & Chao, D. Y. (2004). QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 108(2), 253–260. https://doi.org/10.1007/s00122-003-1421-y

Liu, C., Mao, B., Yuan, D., Chu, C., & Duan, M. (2022). Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop Journal, 10(1), 13–25. https://doi.org/10.1016/j.cj.2021.02.010

Lodeyro, A. F., & Carrillo, N. (2015). Salt stress in higher plants: mechanisms of toxicity and defensive responses. Stress Responses in Plants: Mechanisms of Toxicity and Tolerance, 1–33.

Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852. https://doi.org/10.1093/jxb/46.12.1843

Ma, X., Feng, F., Wei, H., Mei, H., Xu, K., Chen, S., Li, T., Liang, X., Liu, H., & Luo, L. (2016). Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Frontiers in Plant Science, 7, 1801.

Maathuis, F. J. M., Ahmad, I., & Patishtan, J. (2014). Regulation of Na+ fluxes in plants. Frontiers in Plant Science, 5(SEP), 1–9. https://doi.org/10.3389/fpls.2014.00467

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30.

Mahmood, A., Latif, T., & Arif Khan, M. (2009). Effect of salinity on growth, yield and yield components in basmati rice germplasm. Pakistan Journal of Botany, 41(6), 3035–3045.

Maia, J. M., Voigt, E. L., Ferreira-Silva, S. L., Fontenele, A. V., Macêdo, C. E. C., & Silveira, J. A. G. (2013). Differences in Cowpea Root Growth Triggered by Salinity and Dehydration are Associated with Oxidative Modulation Involving Types I and III Peroxidases and Apoplastic Ascorbate. Journal of Plant Growth Regulation, 32(2), 376–387. https://doi.org/10.1007/s00344-012-9308-2

Marwanto, S., Rachman, A., Erfandi, D., & Subiksa, I. G. M. (2009). Tingkat salinitas tanah pada lahan sawah intensif di Kabupaten Indramayu, Jawa Barat. Balai Penelitian Tanah. Bogor.

Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173. https://doi.org/10.1093/aob/mcm052

Munns, R., Guo, J., Passioura, J. B., & Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Australian Journal of Plant Physiology, 27(10), 949–957. https://doi.org/10.1071/pp99193

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Muranaka, S., Shimizu, K., & Kato, M. (2002). Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica, 40, 201–207.

Murphy, L. R., Kinsey, S. T., & Durako, M. J. (2003). Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany, 75(4), 293–309. https://doi.org/10.1016/S0304-3770(02)00206-1

Negacz, K., Malek, Ž., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203, 104775. https://doi.org/https://doi.org/10.1016/j.jaridenv.2022.104775

Platten, J. D., Egdane, J. A., & Ismail, A. M. (2013). Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: Many sources, many genes, one mechanism? BMC Plant Biology, 13(1). https://doi.org/10.1186/1471-2229-13-32

Qin, H., Zhang, J., Yang, H., Yao, S., He, L., Liang, H., Wang, Y., Chen, H., Zhao, P., & Qin, G. (2020). Safety Assessment of Water-Extract Sericin from Silkworm (Bombyx mori) Cocoons Using Different Model Approaches. BioMed Research International, 2020. https://doi.org/10.1155/2020/9689386

Rahman, A., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science, 7(MAY2016), 1–16. https://doi.org/10.3389/fpls.2016.00609

Rajendran, K., Tester, M., & Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant, Cell and Environment, 32(3), 237–249. https://doi.org/10.1111/j.1365-3040.2008.01916.x

Razzaq, A., Ali, A., Safdar, L. Bin, Zafar, M. M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1), 14–20.

Razzaque, S., Elias, S. M., Haque, T., Biswas, S., Jewel, G. M. N. A., Rahman, S., Weng, X., Ismail, A. M., Walia, H., Juenger, T. E., & Seraj, Z. I. (2019). Gene Expression analysis associated with salt stress in a reciprocally crossed rice population. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-44757-4

Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., Zhu, M. Z., Wang, Z. Y., Luan, S., & Lin, H. X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37(10), 1141–1146. https://doi.org/10.1038/ng1643

Ruan, C. J., da Silva, J. A. T., Mopper, S., Pei, Q., & Lutts, S. (2010). Halophyte Improvement for a Salinized World. Critical Reviews in Plant Sciences, 29(6), 329–359. https://doi.org/10.1080/07352689.2010.524517

Seifikalhor, M., Aliniaeifard, S., Shomali, A., Azad, N., Hassani, B., Lastochkina, O., & Li, T. (2019). Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling and Behavior, 14(11). https://doi.org/10.1080/15592324.2019.1665455

Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112(7), 1209–1221. https://doi.org/10.1093/aob/mct205

Singam, K., Juntawong, N., Cha-Um, S., & Kirdmanee, C. (2011). Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. African Journal of Biotechnology, 10(8), 1340–1346. https://doi.org/10.5897/AJB10.1805

Sukawati, I. (2010). Pengaruh kepekatan larutan nutrisi organik terhadap pertumbuhan dan hasil baby kailan (brassica oleraceae var. Albo-glabra) pada berbagai komposisi media tanam dengan sistem hidroponik substrat.

Sutono, S. (2015). Penanggulangan dan pengelolaan sawah tanah salin. Makalah Lokakarya Strategi Pengelolaan Lahan Salin Mendukung Peningkatan Produksi Padi Di Jawa Tengah, Semarang, 17–18.

van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71(1), 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A. M., Zeng, L., Wanamaker, S. I., Mandal, J., Xu, J., Cui, X., & Close, T. J. (2005). Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiology, 139(2), 822–835. https://doi.org/10.1104/pp.105.065961

Wegner, L. H., Stefano, G., Shabala, L., Rossi, M., Mancuso, S., & Shabala, S. (2011). Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na+ and K+ transport into xylem vessels. Plant, Cell and Environment, 34(5), 859–869. https://doi.org/10.1111/j.1365-3040.2011.02291.x

Zhang, J. Z., Creelman, R. A., & Zhu, J. K. (2004). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology, 135(2), 615–621. https://doi.org/10.1104/pp.104.040295

Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017