Sagu : Sumberdaya untuk Penganekaragaman Pangan Pokok

Main Article Content

Tajuddin Bantacut

Abstract

Perubahan iklim terus berlangsung mempengaruhi produksi pertanian terutama padi. Kekeringan dan banjir telah menjadi fenomena umum yang menyebabkan gagal panen dan penurunan produksi. Situasi ini memaksa manusia untuk tidak bergantung pada bahan pangan yang terbatas. Sagu adalah komoditas yang relatif tidak dipengaruhi oleh iklim dan bencana alam. Tanaman ini juga termasuk sangat efisien dalam menyediakan kalori esensial. Pati sagu dan hasil olahannya telah banyak dikonsumsi baik sebagai pangan pokok maupun kudapan di berbagai daerah terutama masyarakat pesisir atau dataran rendah. Berbagai penelitian telah dilakukan namun belum banyak dimanfaatkan dalam pengolahan pangan berbasis sagu. Untuk meningkatkan konsumsi sagu, berbagai strategi dan program perlu dilakukan. Paper ini membahas berbagai upaya pemanfaatan sagu dalam perspektif ketahanan pangan. Pada bagian akhir dibuat usulan untuk pengembangan sagu sebagai salah satu pangan pokok masyarakat Indonesia.

Climate that has continuously been changing influences agricultural products, especially paddy. Drought and flood have become common phenomena causing not only harvest failure but also production decline. This situation forces people not to depend on limited food commodity. Sago is one of the commodities that are relatively not influenced by both climate and natural disaster. Moreover, sago is highly efficient in providing essential calories. Sago starch and its processed products have been widely consumed as staple food and snacks in many communities especially those who live in coastal regions or low lands. Even though various researches have been undertaken, the results are not much utilized in processing the sago-based foods. Therefore to improve the level of sago consumption, strategic plans and programs are still needed. This paper discusses several efforts in sago utilization within the perspective of food security. At the end, this paper also proposes a set of recommendations to promote sago as one of the main staple foods of Indonesian people.

 

Article Details

Section
Articles
Author Biography

Tajuddin Bantacut

Departemen Teknologi Industri
Pertanian, IPB

References

Abd-aziz, S. 2002. Sago starch and its utilisation, Journal of Bioscience and Bioengineering 94 (6): 526–529.

Balai Penelitian Bioteknologi Perkebunan Indonesia. 2007. Tanaman Sagu sebagai Sumber Energi Alternatif. Warta Penelitian dan Pengembangan Pertanian (29)4. Jakarta.

Bank Indonesia. 2007. Pola Pembiayaan Usaha Kecil Syariah (PPUK-Syariah) Industri Sohun. Direktorat Kredit, BPR dan UMKM, Bank

Indonesia. Jakarta.

Bantacut. 2010. Perspektif Pemanfaatan Hasil Sagu. Paper disampaikan pada Seminar dan Lokakarya Nasional Sagu: Percepatan

Pengembangan Sagu Sebagai Bahan Pangan dan Bioenergi Berwawasan Lingkungan. Departemen Agronomi dan Hortikultura IPB. IPB Convention Center, Bogor 14 Oktober 2010.

BPS, 2009. Statistik Indonesia. Badan Pusat Statistik Indonesia, Jakarta.

Charoenlap, N., S. Dharmsthiti, S. Sirisansaneeyakul, and S. Lertsiri. 2004. Optimization of Cyclodextrin Production from Sago Starch.

BioresourceTechnology 92:49–54

Chulavatnatol, M. 2002. Starch Utilization in Asia in Kainuma, K., M. Okazaki, Y. Toyoda, and J.E. Cecil (eds.). Proceedings of the International Symposium on Sago. Tokyo, Japan:

Cousidine, D. M. 1982. Foods and Food Production Encyclopedia. John Wiley Inc., NY.

Ditjen P2HP. 2008. Profil Investasi Bioenergi. Departemen Pertanian, Jakarta.

Djoefrie, M.H.B. 1999. Pemberdayaan Tanaman Sagu Sebagai Penghasil Bahan Pangan Alternatif dan Bahan Baku Agroindustri

Potensial Dalam Rangka Ketahanan Pangan Nasional. Fakultas Pertanian, IPB. Bogor.

Ehara, H. 2009. Potency of Sago Palm as Carbohydrate Resource for Strengthening

Ellen, R. 2008. Distribution and variation in sago extraction equipment: convergent and secondary technologies in island Southeast Asia. Archaeol Oceania 43: 62-74

Flach, M. 1977. Yield potential of the sago palm and its realization In M.A. Tankooling (Ed.), Sago ’76: Papers of the first International Sago

Symposium, Kuala Lumpur (pp.157–177).

Flach, M. 1983. The Sago Palm: Domestication, Exploitation and Products. Food and Agriculture Organization of the United Nations. Rome. Food Security Program. J. Agron. Indonesia 37 (3): 209 – 219

Haryanto, B. dan P. Pangloli. 1992. Potensi dan Pemanfaatan Sagu. Kanisius, Yogyakarta.

Hermansson, A. M. and K. Svegmark. 1996. Trends in Food Science and Technology 7: 345-353.

Huang, D. P. 1995. New Perspectives on Starch and Starch Derivatives for Snack Applications National Starch and Chemical Company Bridgewater, New Jersey. Reprinted from the

August 1995 issue of CEREAL FOODS WORLD.

IFRI, 2001. Sustainable Food Security For All by 2020. International Food Policy Research Institute. Washington, D.C.

Ishizaki, A. 1997. Concluding Remarks for the Sixth International Sago Symposium at Riau, Indonesia. Sago Communication 8 (pp. 22–25). Japan: Tsukuba Sago Fund.

Kanro, M. Z., A. Rouw, A. Widjono, Syamsuddin, Amisnaipa, dan Atekan. 2003. Tanaman Sagu dan Pemanfaatannya di Propinsi Papua. Jurnal Litbang Pertanian 22(3): 116-124

Karim, A. A., A. T. Pei-Lang, D.M.A. Manan, and I.S.M. Zaidul. 2008. Starch from the Sago (Metroxylon sagu) Palm Tree—Properties,

Prospects, and Challenges as a New Industrial Source for Food and Other Uses. Comprehensive Reviews in Food Science and

Food Safety Vol.7

Lang, A.T., A.M.D. Mohamed and A.A. Karim. 2006. Sago Starch and Composition of Associated Components in Palms of Different Growth Stages. Carbohydrate Polymers 63 (2): 283–286.

Lourdin, D., D. Valle, and P. Coobba.1995. Influence of Amylase Content on Starch Films and Foams. Carbohydrate Polymers 27:261–70.

Mohamed, A., B. Jamilah, K.A. Abbas, R. A. Rahman and K. Roselina. 2008. A Review on Physicochemical and Thermorheological

Properties of Sago Starch. American Journal of Agricultural and Biological Sciences 3 (4):639-646.

Naylor, R., Liska, A.J., Burke, M.B., Falcon, W.P.,Gaskell, J.C., Rozelle, S.D. & Cassman, K.G. 2007. The Ripple Effect : Biofuels, Food

Security, and The Environment. Environment 49(9): 31–43.

Odusanya, O.S., U.S. Ishiaku, B.M.N. Azemi, B.D.M.Manan, and H.W. Kammer. 2000. On Mechanical Properties of Sago Starch/Poly (•-

caprolactone) Composites. Polymer Engineering and Science, June 40 (6): 1298-1305.

Pei-Lang, A.T., A.M.D. Mohamed and A.A. Karim. 2005. Sago Starch and Composition of Associated Components in Palms of Different

Growth Stages. Carbohydrate Polymers 63 (2006) 283–286.

Radley, J.A. 1976. The Minor Starches of Commerce: The Manufacture of Rice, Arrowroot and Sago Starch, Starch production technology, Applied Science Publishers Ltd, London (1976), pp.

–246.

Rajagopal, D. S.E.Sexton, D. Roland-Host, and D. Zilberman. 2007. Challenge of Biofuel: Filling The Tank Without Emptying The Stomach? Environmental Research Letters, 2, 30 November.

Rudle, K., D. Johnson, P. K. Townsend and J.D. Ress. 1978. Palm Sago: A tropical starch from Marginal Lands. An East – West Center Book,

Honolulu.

Singha, R.S., J. F. Kennedy, S. M. Gopalakrishnan, A. Kaczmarek, C. J. Knill, and P. F.Akmar.

Review: Industrial Production, Processing, and Utilization of Sago Palm-Derived Products. Carbohydrate Polymers 72 (2008) 1–20

Suryana. A. 2009. Dukungan Kebijakan Pengembangan Industri Tepung Cassava. Paper dipresentasikan pada Lokakarya

Nasional Akselerasi Industrialisasi Tepung Cassava untuk Memperkokoh Ketahanan Pangan Nasional. Balai Kartini, 9 Mei 2009, Jakarta.

Swinkels, J. J. M. 1985. Sources of Starch, its Chemistry and Physics. In G. M. A. Van Beynum & J. A. Roels (Eds.), Starch Conversion Technology (pp. 15–45). New York: Marcel Dekker, Inc.

Tombs, M.P. and S.E. Harding.1998.Some Bacterial and Synthetic Polysaccharides in Tombs,M.P and S.E.Harding (Eds.). An Introduction to Polysaccharide Biotechnology. Taylor and

Francis, USA,pp.165–171. Universal Academy Press Inc. p9–14.

Yiu, P.H. S.L. Loh, A. Rajan, S.C. Wang and C.F.J. Bong. 2008. Physiochemical Properties of Sago Strach Modified by Acid Treatment in Alcohol. American Journal of Applied Sciences

(4): 307-311