Potensi Rekayasa Genetik Bawang Putih terhadap Kandungan Senyawa Komponen Bioaktif Allicin dan Kajian Sifat Fungsionalnya

Main Article Content

Erwin Fajar Hasrianda
R. Haryo Bimo Setiarto

Abstract

Bawang putih berasal dari daerah tropis dan subtropis di Asia Tengah dan menyebar ke bagian lain dunia melalui perdagangan dan kolonisasi. Bawang putih memiliki sifat farmasi yang tinggi dengan adanya lebih dari 33 senyawa komponen bioaktif mengandung belerang yang ampuh menghambat pertumbuhan bakteri, virus, dan jamur. Kandungan utama dalam umbi bawang putih adalah senyawa allicin yang mengandung sulfur (thio-2-propene-1-sulfinic acid S-allyl ester). Allicin diketahui memiliki berbagai fungsi biokimia, seperti antikoagulan, antihipertensi, antimikotik, antitumor, antioksidan, antipenuaan, detoksifikasi logam berat, fibrinolusis, hipolipidemik (penurun lemak) dan penguat sistem imun. Program pemuliaan tanaman yang menargetkan kultivar bawang putih dengan kandungan allicin lebih tinggi terus diupayakan oleh para ilmuwan untuk meningkatkan manfaatnya. Program ini dilakukan dengan pendekatan rekayasa
genetika dan rekayasa jalur biosintesis dari senyawa penyusun allicin. Kajian molekuler tentang biosintesis, transportasi, dan regulasi senyawa allicin pada bawang putih dalam reviu ini tidak hanya memberikan wawasan tentang pengetahuan dasar kita, tetapi juga memfasilitasi rekayasa metabolisme bawang putih di masa depan menggunakan teknologi transgenik dan rekayasa genetika.

Article Details

Section
Articles
Author Biography

R. Haryo Bimo Setiarto, Pusris Biologi, BRIN

Peneliti

References

Adetumbi MA, Lau BH. Allium sativum (garlic)--a natural antibiotic. Medical hypotheses. 1983; 12:227–37.

Bat-Chen, W.; Golan, T.; Peri, I.; Ludmer, Z.; Schwartz, B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr. Cancer 2010, 62, 947–957.

Bikis, D. (2018). Review on the Application of Biotechnology in Garlic ( Allium Sativum ) Improvement. International Journal of Research Studies in Agricultural Sciences, 4(11), 23–33.

Bloem, E., Haneklaus, S., & Schnug, E. (2010). Influence of Fertilizer Practices on S-Containing Metabolites in Garlic (Allium sativum L.) under Field Conditions. Journal of Agricultural and Food Chemistry, 58(19), 10690–10696. https://doi.org/10.1021/jf102009j

Borlinghaus, J., Albrecht, F., Gruhlke, M. C. H., Nwachukwu, I. D., & Slusarenko, A. J. (2014). Allicin: Chemistry and biological properties. Molecules, 19(8), 12591–12618. https://doi.org/10.3390/molecules190812591

Cavallito, C. J., Bailey, J. H., & Buck, J. S. (1945). The Antibacterial Principle of Allium Sativum. III. Its Precursor and “Essential Oil of Garlic.” Journal of the American Chemical Society, 67(6), 1032–1033. https://doi.org/10.1021/ja01222a501

Granroth, B. (1970). Biosynthesis and decomposition of cysteine derivatives in onion and other Allium species. In Helsingfors Suomalainen Tiedeakat Toimituksia Ser A Ii Chem: Vol. v. 1970, 1.

Grzam, A., Martin, M. N., Hell, R., & Meyer, A. J. (2007). γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Letters, 581(17), 3131–3138. https://doi.org/https://doi.org/10.1016/j.febslet.2007.05.071

Gunther, W. H. H. (2013). Garlic and other alliums – the lore and the science. Journal of Sulfur Chemistry, 34(1–2), 208–208. https://doi.org/10.1080/17415993.2012.712123

Herden, T., Hanelt, P., & Friesen, N. (2016). Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Molecular Phylogenetics and Evolution, 95, 79–93. https://doi.org/https://doi.org/10.1016/j.ympev.2015.11.004

Ichikawa, M., Ide, N., Yoshida, J., Yamaguchi, H., & Ono, K. (2006). Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 54(5), 1535–1540. https://doi.org/10.1021/jf051742k

Jones, M. G., Hughes, J., Tregova, A., Milne, J., Tomsett, A. B., & Collin, H. A. (2004). Biosynthesis of the flavour precursors of onion and garlic. Journal of Experimental Botany, 55(404), 1903–1918. https://doi.org/10.1093/jxb/erh138

Lancaster, J. E., & Collin, H. A. (1981). Presence of alliinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Allium cepa). Plant Science Letters, 22(2), 169–176. https://doi.org/https://doi.org/10.1016/0304-4211(81)90139-5

Moura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/em

Ovesná, J., Mitrová, K., & Kučera, L. (2015). Garlic (A. sativum L.) alliinase gene family polymorphism reflects bolting types and cysteine sulphoxides content. BMC Genetics, 16(1), 1–10. https://doi.org/10.1186/s12863-015-0214-z

Powolny, A. A., & Singh, S. V. (2008). Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Letters, 269(2), 305–314. https://doi.org/https://doi.org/10.1016/j.canlet.2008.05.027

Rabimkov, A., Zhu, X., Grafi, G., Galili, G., & Mirelman, D. (1994). Alliin Lyase (Alliinase) from Garlic (Allium sativum). Applied Biochemistry and Biotechnology, 48(3), 149–171. https://doi.org/10.1007/bf02788739

Rose, P., Whiteman, M., Moore, K., & Zhun, Y. (2005). Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep., 22, 351–368. https://doi.org/10.1039/b417639c

Sayadi, V., Karimzadeh, G., Monfared, S. R., & Naghavi, M. R. (2020). Identification and expression analysis of S-alk (en)yl-L-cysteine sulfoxide lyase isoform genes and determination of allicin contents in Allium species. PLoS ONE, 15(2), 1–16. https://doi.org/10.1371/journal.pone.0228747

Shaw, M. L., Pither-Joyce, M. D., & McCallum, J. A. (2005). Purification and cloning of a γ-glutamyl transpeptidase from onion (Allium cepa). Phytochemistry, 66(5), 515–522. https://doi.org/10.1016/j.phytochem.2005.01.017

Stoll, A., & Seebeck, E. (1947). Über Alliin, die genuine Muttersubstanz des Knoblauchöls. Experientia, 3(3), 114–115. https://doi.org/10.1007/BF02137698

Sun, X., Zhu, S., Li, N., Cheng, Y., Zhao, J., Qiao, X., Lu, L., Liu, S., Wang, Y., Liu, C., Li, B., Guo, W., Gao, S., Yang, Z., Li, F., Zeng, Z., Tang, Q., Pan, Y., Guan, M., … Liu, T. (2020). A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis. Molecular Plant, 13(9), 1328–1339. https://doi.org/10.1016/j.molp.2020.07.019

Suzuki, T., Sugii, M., & Kakimoto, T. (1962). Metabolic Incorporation of L-Valine-[14C] into S-(2-Carboxypropyl) glutathione and S-(2-Carboxypropyl) cysteine in Garlic.(< ?? ?? >51). CHEMICAL & PHARMACEUTICAL BULLETIN, 10(4), 328–331. https://doi.org/10.1248/cpb.10.328

Tattelman, E. (2005). Health effects of garlic. American Family Physician, 72(1), 103–106.

Wang, H., Li, X., Shen, D., Oiu, Y., & Song, J. (2014). Diversity evaluation of morphological traits and allicin content in garlic (Allium sativum L.) from China. Euphytica, 198(2), 243–254. https://doi.org/10.1007/s10681-014-1097-1

Weiner, L., Shin, I., Shimon, L. J. W., Miron, T., Wilchek, M., Mirelman, D., Frolow, F., & Rabinkov, A. (2009). Thiol-disulfide organization in alliin lyase (alliinase) from garlic (Allium sativum). Protein Science, 18(1), 196–205. https://doi.org/10.1002/pro.10

Yamaguchi, Y., & Kumagai, H. (2019). Characteristics, biosynthesis, decomposition, metabolism and functions of the garlic odour precursor, S‑allyl‑l‑cysteine sulfoxide (Review). Experimental and Therapeutic Medicine, 1528–1535. https://doi.org/10.3892/etm.2019.8385

Yoshimoto, N., Onuma, M., Mizuno, S., Sugino, Y., Nakabayashi, R., Imai, S., Tsuneyoshi, T., Sumi, S. I., & Saito, K. (2015a). Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant Journal, 83(6), 941–951. https://doi.org/10.1111/tpj.12954

Yoshimoto, N., Onuma, M., Mizuno, S., Sugino, Y., Nakabayashi, R., Imai, S., Tsuneyoshi, T., Sumi, S. I., & Saito, K. (2015b). Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant Journal, 83(6), 941–951. https://doi.org/10.1111/tpj.12954

Yoshimoto, N., & Saito, K. (2019). S-Alk(en)ylcysteine sulfoxides in the genus Allium: Proposed biosynthesis, chemical conversion, and bioactivities. Journal of Experimental Botany, 70(16), 4123–4137. https://doi.org/10.1093/jxb/erz243

Yu, L.; Guo, N.; Meng, R.; Liu, B.; Tang, X.; Jin, J.; Cui, Y.; Deng, X. Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 88, 219–229.